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Abstract
Results of an extensive Monte Carlo (MC) study on both single and many
semiflexible charged chains with excluded volume (EV) are summarized. The
model employed has been tailored to mimic wormlike micelles in solution.
Simulations have been performed at different ionic strengths of added salt,
charge densities, chain lengths and volume fractions �, covering the dilute
to concentrated regime. At infinite dilution the scattering functions can be
fitted by the same fitting functions as for uncharged semiflexible chains with
EV, provided that an electrostatic contribution bel is added to the bare Kuhn
length. The scaling of bel is found to be more complex than the Odijk–Skolnick–
Fixman predictions, and qualitatively compatible with more recent variational
calculations. Universality in the scaling of the radius of gyration is found if
all lengths are rescaled by the total Kuhn length. At finite concentrations, the
simple model used is able to reproduce the structural peak in the scattering
function S(q) observed in many experiments, as well as other properties
of polyelectrolytes (PELs) in solution. Universal behaviour of the forward
scattering S(0) is established after a rescaling of �. MC data are found to
be in very good agreement with experimental scattering measurements with
equilibrium PELs, which are giant wormlike micelles formed in mixtures of
nonionic and ionic surfactants in dilute aqueous solution, with added salt.

1. Introduction

In the last decade considerable interest has been devoted to the study of wormlike micelles as
an ideal model system for polyelectrolytes (PELs) [1–5]. The stronger scattering power of mi-
cellar solutions compared with conventional PELs allows one to explore the very dilute regime
and to extrapolate to single-coil properties. The goal is to provide high-quality experimental
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data that can be compared with existing theories to test the validity of the fundamental assump-
tions and approximations, which is still a matter of controversy. From a practical point of view
it is relatively easy to tune a given charge density on micelles by ‘doping’ solutions containing
giant wormlike micelles with a small amount of ionic surfactants. The resulting electrostatic
interactions can be screened out by adding salt. It has been argued that such solutions exhibit
static properties similar to PELs in solutions under analogous conditions [2, 4, 5]. There are,
however, important differences that should be considered. Micelles are living structures, they
can break and recombine, and the resulting molecular weight distribution is not quenched.
Moreover, on increasing concentration, micelles grow and the molecular weight becomes a
function of the volume fraction �. The exact form of the growth law is still not known,
and this paper tries to take an important step also in clarifying this point (see section 4.3).
Finally, micelles are believed to have a broad size distribution [1]. In our simulations we
have concentrated on monodisperse systems. For long chains, polydispersity should cause
no significant effect on local quantities such as the Kuhn length b. However, it is not clear
whether the neglect of polydispersity is important for global quantities such as the forward
scattering intensity S(0). For classical PELs, a comparison between experimental data and
simulation results for S(0)would clearly require the incorporation of polydispersity. However,
for micelles, which do possess a finite lifetime and can then considered as ‘equilibrium’ or
‘living’ polymers or PELs, it has been argued that the average mass or aggregation number is
the only relevant quantity, and that the explicit form of the size distribution does not enter.

The approach to PELs in solution is particularly challenging for theories and
experiments [6]. This is mainly due to two fundamental features of PELs: the long-range
nature of the Coulomb interactions, and the influence not only of the solvent, as in the case of
uncharged polymers, but also of counterions, and added salt ions.

Due to electrostatic repulsion charged chains are swollen compared with uncharged, and
so the overlap concentration is expected to be shifted towards lower values. It usually happens
that the corresponding dilute regime falls well below the detection sensitivity of the currently
available scattering instruments. This makes it almost impossible to determine the structure
of PELs in the dilute regime where true single-chain properties are probed. This problem is
particularly relevant considering that most of the theoretical works deal with approximations
valid only in this regime. In contrast, in the case of wormlike micelles all length scales are
increased by a factor of five to ten, resulting a larger accessible regime for measurements.

A powerful tool to manage the specific problems posed by PELs turned out to be Monte
Carlo (MC) simulations, which have already extensively and successfully been applied to
uncharged polymers. PEL simulations are, however, more difficult and expensive in CPU
time compared with neutral polymers. Despite the difficulties, several works have appeared
in the literature in the last decades. Single chains in salt solution have been simulated both
without explicit inclusion of counterions and coions [7–13], and with their inclusion (primitive
model) [14]. Stevens and Kremer have performed molecular dynamics simulations of many
chain systems using a continuum model in the Debye–Hückel approximation [15] and also
including the full Coulomb interactions between monomers and counterions [16–20]. Even if
progress has been made, it is still modest, and the knowledge of the fundamental issues still
lacking [21]. The major efforts in the simulation research have focused on the conformational
properties and on the important issue of universality. Very few studies have been devoted to
analysing the scattering function of such systems. This function seems to us to deserve more
attention considering that most of the experimental studies on PELs use scattering experiments
where the scattering function is the directly measured quantity. With this work we have also
tried to fill this gap by performing systematic and extensive MC simulations of both single- and
many-charged-chain systems with excluded volume (EV). In order to achieve an exhaustive set
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of results, in accordance with the large variety of possible conditions for PELs in solution, we
have simulated systems at various volume fractions �, ionic strengths I , charge densities Zb

and chain lengths L. To better understand the effects of electrostatic interactions, uncharged
chains have been simulated as well, at the same volume fractions. A further factor which has
motivated us to produce a quite complete set of simulations is the idea of ending up with a full
parametrization of the scattering function, as already achieved for uncharged systems [22,23],
thus providing a fundamental model to analyse experimental scattering data.

Simulation data have also been compared with SANS experiments on a system consisting
of a mixture of hexa-ethylene glycol mono n-hexadecyl-ether (C16E6) and a small amount of
the ionic surfactant 1-hexadecane sulfonic acid (C16SO3Na), with added salt (NaCl), which
gives rise to charged PEL-like micelles [5].

2. Model and simulation technique

In order to account for the semiflexibility of the wormlike micelles we have employed a discrete
representation of the wormlike chain (WLC) model, introduced by Kratky and Porod [24]. It
consists of a freely rotating chain of N points linked by bonds of length a, and equal valence
angle θ . The chain length is therefore L = (N − 1)a and the intrinsic Kuhn length b is given
by

b = a
1 + cos θ

1 − cos θ
. (1)

EV effects are reproduced by replacing the N points on the chain with N hard spheres of
radius ρ = 0.1b and, when sampling, discarding those chain configurations with overlap of
the spheres. The value ofρ has been chosen based on previous experimental observations of the
local structure of wormlike micelles [25] and on the fact that the uncharged model describes the
structure and EV effects of both wormlike micelles and polystyrene in a good solvent [22,25].
The continuous limit in the model is obtained by letting N → ∞, a → 0, and θ → 0, with
the constraint that L and b remain constant. Only in the single-chain simulations have we
extrapolated to the continuous limit. The procedure consists in performing for each value of
L/b a number of runs using different values of N and nb and extrapolating the quantities of
interest in the limit of n−1

b → 0. Here nb denotes the number of spheres per Kuhn length,
nb = b/a, thus L/b = N/nb. Typical values for N and nb used range from 720 to 11 520
and from 3 to 192, respectively. In the many-chain simulations the large size of the systems
studied makes practically unfeasible the use of such long chains, and therefore no continuous
limit has been performed. We used in these simulations nb = 6.

The electrostatic interactions are included by associating Zb charges per Kuhn length. We
have chosen to use Zb = 25, 50 and 75, which is a value that should closely correspond to the
situation encountered in our experiments with polymer-like micelles [5]. We do not take into
account explicitly the presence of coions and counterions in this study: the only electrostatic
interactions are those between fixed charges on the polyion, screened by clouds of coions of the
added salt and counterions. This is mathematically expressed by the ‘crude’ approximations
of the (Debye–Hückel) Coulomb interaction energy:

U(r) =



(ZbLe/Nb)2

4πε0εr

e−r/λD

r
for r > 2ρ

∞ otherwise.

In the above expression e is the elementary charge, ε0 the permittivity of vacuum, εr the
dielectric constant of the solvent and λD the Debye screening length. The solvent is treated as
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Figure 1. Debye length versus volume fraction � at different values of ionic strength I and charge
density Zb . From top to bottom: I = 0.001 M, Zb = 25, 50, 75; I = 0.01 M, Zb = 25, 50, 75;
I = 0.1 M, Zb = 25, 50, 75.

a dielectric continuum with a dielectric constant εr = 78.5 (H2O at 25 ◦C), assumed constant
at all concentrations. The free ions in solution give rise to a screening length

λD =
(
ε0εrkBT

2e2I

)1/2

(2)

where kB is Boltzmann’s constant, T the absolute temperature and I the ionic strength in
mol l−1 of the added salt. At infinite dilution I does not contain any contribution from the
counterions but only from the added salt ions. At finite concentrations, in contrast, a significant
contribution to I might arise from the presence of counterions in solution, and λD turns out to
be a function of �, whose behaviour is sketched in figure 1. For more details on the model
see [26, 27], and references therein.

During the simulation the end-to-end distance

Dee = [〈(RN − R1)
2〉]1/2

(3)

with Ri being the positions of the beads, and the radius of gyration

Rg =
[〈

1

N

N∑
i=1

(Ri − RCM)2

〉]1/2

(4)

where RCM is the position of the centre of mass of the chain, given by

RCM = 1

N

N∑
i=1

Ri (5)

were sampled. In these expressions 〈· · ·〉 denotes the ensemble average. Statistical errors
on the sampled quantities were determined by block analysis [28]. Trial configurations are
accepted according to the Metropolis criterion [29].

We have also sampled the full system scattering function S(q) and the single-chain
scattering function P(q), where q is the modulus of the scattering vector.

In the single-chain simulations trial chain configurations have been generated by means of
the pivot [30,31] algorithm, which is extremely efficient due to its very short correlation time
for self-avoiding chains [32], even when screened electrostatic interactions are included [33].
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Figure 2. Example of scattering functions at infinite dilution at four different ionic strengths. The
contour length is L/b = 480. The full curves are fits of the uncharged WLC function with EV as
given in [22] to the MC data. Symbols: 	, I = 10−4 M; �, I = 10−3 M; ♦, I = 2.5 × 10−3 M;◦, I = 5 × 10−2 M. (b) The same data as in (a) represented in a Holtzer plot, qbS(qb) versus
qb. Note that the point where the crossover occurs shifts toward lower values of q with decreasing
ionic strength, as a qualitative demonstration of the increasing stiffness of the chain.

In the many-chain simulations the system is confined in a box with periodic boundary
conditions. The side length of the box is chosen so that the desired volume fraction � is
obtained: Lbox = (V/�)1/3, where V = NcN4πρ3/3 is an estimate of the volume of the Nc

chains present. Trial configurations are generated by a reptation method. On increasing the
chain concentration this algorithm increases its efficiency in comparison with the pivot. Note
that the minimum q value sampled in the simulations is constrained to q = 2π/Lbox, and the
minimum Debye length must be restricted to λD � Lbox.

3. Single-chain simulations: results

3.1. Scattering function and Kuhn length

Examples of simulation results for the scattering functions are shown in figure 2. The fits
(full curves) are performed using a numerical parametrization of the scattering functions for
uncharged semiflexible chains with EV effects [22], treating the Kuhn length btot(nb) as a
fitting parameter so that the electrostatic contribution bel(nb) on this parameter is determined.
It is remarkable that the scattering function of both uncharged and charged systems exhibits
the same functional form, as the good quality of the fits demonstrates. Even the Holtzer plot
(figure 2(b)), that is particularly sensitive to small deviations in the crossover region, shows
very good agreement at all values ofL and I investigated. From these fits we obtain an effective
electrostatic Kuhn length bel(nb). After performing extrapolations to the limit nb → ∞ and
L → ∞ [26], we obtain the results plotted in figure 3 as bel versus ionic strength I . We clearly
see the increasing influence of electrostatic interactions on chain flexibility already apparent
from the changes of the scattering curves in figure 2.

We can compare the simulation results with the predictions of the theoretical Odijk–
Skolnick–Fixman (OSF) model [34]. The OSF theory splits the total Kuhn length into two
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Figure 3. Electrostatic Kuhn length bel/b versus chain length, extrapolated to the continuous limit
of the model, and to L → ∞, compared with the OSF prediction (full line). Symbols: MC data
(�), experimental data (•).

contributions,

btot = b + bel (6)

where b is the Kuhn length due to the intrinsic stiffness of the chain and bel is the electrostatic
contribution, which for an infinitely long chain is given by

b∞
el (I ) = λB

2

(
λD

d

)2

(7)

where d is the distance apart of two neighbouring charges and

λB = e2

4πεoεrkBT
(8)

is the Bjerrum length. In figure 3 the MC data are compared with the theoretical expectations
of the OSF theory (full line in the plot). One of the basic assumptions of the OSF theory is that
the PEL is near to the rigid rod limit and, in fact, we notice that at low ionic strength, i.e. for
increasing stiffness of the chain, the MC results converge asymptotically to the OSF values.
However, in the range of I investigated bel does not show the simple scaling (power law)
predicted. The occurrence of more complex scaling has been also pointed out theoretically by
means of variational calculations, for example in the work of Ha and Thirumalai [35].

The MC data can also be compared with our experimental neutron scattering results on
dilute mixtures of the nonionic surfactant C16E6 and small amounts (6 wt%) of the ionic
surfactant C16SO3Na in a NaCl solution, which form PEL-like wormlike micelles. In the
experiments the total Kuhn length was determined by a least-squares fit of the scattering
data using the same fitting model as in the simulations. For a fixed value of the ionic strength,
experiments have been performed at different concentrations of the solution. We have observed
a significant dependence of the total Kuhn length on the concentration, which is ascribed to
interchain interactions [4]. The data shown in figure 3 are linear extrapolations of btot/b to zero
concentration. The complete experimental investigation is reported in [5]. Figure 3 provides us
with a qualitative verification of the previously suggested analogy between PELs and polymer-
like nonionic micelles doped with a small amount of an ionic surfactant. As discussed before,
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in these systems we can profit from the much higher scattering contrast of wormlike micelles
when compared with classical PELs, that enables us to perform experiments in dilute solutions
and to obtain a higher accuracy in the determination of btot from an analysis of scattering
curves. We find excellent agreement between the simulation and experimental data.

3.2. Radius of gyration

The radius of gyration of ideal WLC has been calculated by Benoit–Doty [36] under very
general assumptions

〈R2
g,0〉 = 1

6
Lb −

(
b

2

)2

+
b3

4L

(
1 +

b

2L
(e−2L/b − 1)

)
. (9)

Thus, Rg written in units of the Kuhn length turns out to be a function of the ratio L/b only

〈Rg,0〉/b = fBD(L/b) (10)

where

fBD(L/b) =
[
L

6b
− 1

4
+

b

4L

(
1 +

b

2L
(e−2L/b − 1)

)]1/2

. (11)

The scaling expressed by equation (10), which in the case of ideal chains is a direct consequence
of the Benoit–Doty relation, assumes a deeper meaning in the presence of electrostatic
interactions and EV. This is demonstrated in figure 4(a), where the MC data, plotted in units
of btot versus L/btot for different values of I , collapse on a single master curve g(L/btot). This
proves that the scaling (10) is also preserved in the presence of interactions, provided that b is
replaced with btot, i.e. an additional contribution to the intrinsic Kuhn length is included. In
a next step we can address the exact form of g by recalling that the increase of the radius of
gyration can be expressed in terms of the expansion factor [37]

α2
g = 〈R2

g〉
〈R2

g,0〉
. (12)

Pedersen et al [38] have analysed the dependence of Rg on the chain length for neutral systems
with EV interactions, by MC simulations. The authors have found the empirical expression
for the expansion factor

α2(x) =
[

1 +

(
x

c1

)2

+

(
x

c2

)3
]ε/3

(13)

where x = L/b, to fit the MC data in the full range of L/b simulated (up to ≈18 000) very
well (for details, and for the numerical values of the constants in equation (13), see the above
reference). Since α and fBD(L/btot) give the contribution to the expansion due to non-local
effects (EV) and to the increased local flexibility, respectively, we found it interesting to
compare, in figure 4(a), the quantity α(L/btot)fBD(L/btot) (broken curve) with the MC data.
The very good agreement observed allows us to assume that

g(L/btot) = α(L/btot)fBD(L/btot). (14)

This result demonstrates the consistency of our simulation results with the general OSF
approach, which treats interaction between neighbouring charges as a local effect that produces
an increase in the Kuhn length of the chain, and to incorporate those between charges located
far apart along the chain into EV effects. We stress that α in equation (14) is exactly the
expansion factor of chains without electrostatic interactions, but with L rescaled with btot.
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Figure 4. (a) Radius of gyration data collapsing observed after rescaling all lengths by btot .
(b) Radius of gyration in unit of b versus L/b (cf figure 2 in [39]). Symbols: the same as in
figure 2.

Note that if the contour length is known, equation (14) can be used to determine the total Kuhn
length from experimental or simulation data.

We have also compared our data with a recent variational calculation of Ghosh et al [39].
In the attempt to make such a qualitative comparison easier, we have re-plotted our data in
figure 4(b) using the same units as in figure 2 of [39]. Both MC data and variational calculations
exhibit the same behaviour: at short chain lengths the rigid-rod behaviour is encountered. On
increasing L/b a crossover region is entered without a simple power law scaling. At even
larger contour lengths the self-avoiding regime is reached. Note that our chains are not long
enough to fully enter this regime.

4. Many-chain simulations: results

4.1. Scattering function and related quantities

Examples of MC results of the scattering function at different volume fractions are displayed in
figure 5. Two main effects are evident. At all ionic strengths, as well as for the uncharged sys-
tem, S(0) decreases with increasing concentration due to inter-chain interactions. As expected,
this effect is much more pronounced when the electrostatic interactions are stronger, i.e. at lower
ionic strength and at higher charge density. Physically, this corresponds to an increase of the os-
motic compressibility of the system. For strongly interacting chains a peak in S(q) is observed.
This is a well known feature also observed in experiments and indicates local ordering in the sys-
tem. On increasing concentration, the peak position moves toward higher scattering vectors, as
the chains are on average closer to each other. A similar shift of the peak position is observed at
fixed� and with increasing I . In this case the decrease of d is due to the weakening of the elec-
trostatic repulsion as the screening is increased, and therefore chains are allowed to come closer.
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Figure 5. Effects of concentrations on the scattering function S(q) at Zb = 50, and I = 0.001 M:
from top to bottom � = 10−4, 0.001, 0.002, 0.003, 0.005, 0.008, 0.01, 0.02, 0.04, 0.1, 0.2. Full
lines: fits (see [27]).

Based on the PRISM theory [40], a method to fit S(q) in the whole range of q and at all
settings of the other parameters used in the simulations has been developed in [27]. The fitted
S(q) curve allows one to determine S(0), and the position of the peak, when present.

4.2. Position of the peak of S(q)

A quantitative analysis of the peak position q∗ is worthwhile, since it can be directly compared
with experimental results and theories. Figure 6 contains plots of q∗ derived from MC data as
described in the previous section. q∗ is displayed versus � at I = 10−3 M and at Z = 25, 50
and 75. At high enough concentrations q∗ is found to scale as ∼�1/2. This is predicted from
most theories [41], and also reported in many experimental works. In figure 6 we also compare
the MC data with our previous experimental results on a mixture of non-ionic surfactant and 3
or 6% of ionic surfactant [5]. The MC data reproduce the correct scaling exponent, and also the
position of the crossover at low concentration. Only the non-universal prefactor is, probably,
slightly different. The agreement shows that the simple model adopted in the simulations is
able to reproduce general properties of the investigated system.

4.3. Scaling of the forward scattering

An important quantity to consider is the forward scattering, because it is directly related to the
osmotic compressibility ' of the system through [41]

S(0) = kBT

(
d'

dc

)−1

. (15)

Figure 7(a) shows the values of S(0) obtained by fitting the total scattering function, as
described in section 4.1. In order to find a possible universal behaviour of S(0), we recall
that S(0) data of uncharged systems, corresponding to different values of b and L, collapse on
a single curve if plotted against the reduced concentration c̃ ∝ c/c∗, where c∗ ∼ R−3

g is the
overlap concentration. In the presence of Debye–Hückel interactions the Debye length appears
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Figure 6. Comparison of the peak position of S(q) from simulation data, at I = 0.001 M, Zb = 25
(�), 50 (	), 75 (◦), with experimental data on C16E6 doped with 3% ionic surfactant C16SO3Na
( ), and with 6% of ionic surfactant (�). The straight line has a slope of 1/2, that is the value
theoretically predicted.

as a characteristic length, in addition to the effective hard-sphere radius ρ, which mimics the
EV effects. Two effects have now to be taken into account: the swelling of the chains due to
increased stiffness and the increase of the EV effect. In rescaling the volume fraction, we have
tried to take into account the first effect by replacing Rg with the sampled radius of gyration
Rg(I, Zb) in the presence of charges, added salt, and at infinite dilution, while the second
effect is included by replacing ρ with ρ + λD. We have therefore found it reasonable to define
a rescaled volume fraction for charged systems as

�r =
(
λD + ρ

ρ

)δ (
Rg(I, Zb)

Rg,u

)3

� (16)

whereRg,u is the radius of gyration of the uncharged chain at infinite dilution. In figure 7(b) we
plot the MC data of S(0) versus �r. The data are found to follow a master curve very closely
if δ = 1 is assumed. At high values of � deviations are found, analogous to what is reported
for similar MC simulations on uncharged systems [23]. This is not surprising considering that
equation (16) does not account for screening of EV effects at high concentration. Nevertheless,
the simple behaviour of (16) provides us with a straightforward interpretation: electrostatic
interactions on S(0) can in some respect be accounted for through a simple increase of the EV
strength, and of the stiffness of the chain. The full curve in figure 7(b) is a fit obtained using
a modified renormalization group calculation of Otha and Ono [42] for uncharged polymers
(for details see [27]). The main result is the scaling S(0) ∼ �−τ in the semidilute regime,
with τ � 1.8.

Before concluding we wish to give an example of a possible application of the scaling
law of S(0,�r) found to determine the growth law for charged wormlike micelles by means
of experimental data. The forward scattering and the apparent molar mass are related through

Mapp = 〈M〉W S(0,�r) (17)

where 〈M〉W is the weight-average molar mass [43]. Assuming a power law for the molecular
weight

〈M〉W = Bcα (18)
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Figure 7. (a) Data for the forward scattering S(0) versus �, for all sets of simulations.
(b) Collapsing of the data in (a) when plotted versus the rescaled volume fraction �r defined
by (16), with δ = 1. Full curve: renormalization group calculation of Otha and Ono, employed
with a generalized exponent. In the semidilute regime the scaling is S(0) ∼ �−1.8

r . Symbols:
uncharged chains (•); Zb = 25, I = 0.1 M (	), I = 0.01 M (�), I = 10−3 M (◦); Zb = 50,
I = 0.1 M ( ), I = 0.01 M (�), I = 10−3 M (�); Zb = 75, I = 0.1 M (♦), I = 0.01 M (∗),
I = 10−3 M (-).

where c is the concentration, the right-hand side of equation (17) can be expressed in terms
of the two unknown quantities B and α. Mapp can be measured, e.g. by static light scattering
experiments, and B and α can be obtained by fitting equation (17) to the experimental data,
provided that a functional form for S(0,�) exists (see [3, 44] for uncharged micelles).

5. Conclusions

The effects of electrostatic and EV interactions on size, flexibility and scattering functions
of charged semiflexible chains have been analysed by MC simulations, and compared with
experimental findings on charged wormlike micelles, and with existing theories.

At infinite dilution we have shown that the scattering functions can be fitted by the WLC
model of an uncharged chain with EV. The fits allowed an accurate determination of the
total Kuhn length, which includes the effects of electrostatic interactions. The results are in
excellent agreement with the Kuhn length determined for charged wormlike micelles under
similar conditions as used in the simulations. Both sets of results are in reasonable agreement
with the classical OSF theory; however, the observed Kuhn length is slightly larger than
predicted. MC simulations are also found to be in qualitative agreement with more recent
variational calculations.

Plotting the radius of gyration as a function of the contour length in units of the total Kuhn
length makes the data for different ionic strengths collapse on the same curve. This universal
behaviour is in fact the same as that found for neutral semiflexible chains with EV interactions.
Again, the data are in qualitative agreement with variational calculations.

At finite concentration, when interchain interactions are strong enough, the many-chain
scattering function shows the characteristic structural peak, as observed in many experiments.
Using a fit function based on the PRISM theory, it was possible to fit the S(q) in the full range
of the scattering vector, and to determine the forward scattering and the position of the peak.
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After plotting S(0) versus a rescaled concentration �r the data collapse on a single master
curve. This remarkable property shows that, within the approximation used, the effect of the
electrostatic interactions on the osmotic compressibility can be accounted for by an increase
of the EV strength and of the stiffness of the chains. In the semidilute regime S(0) decays
with a power law with an exponent ∼1.8. At higher �, when the chains enter the ideal regime,
deviations in the scaling plot show up.

The analysis of the position of the peak shows excellent agreement with both experiments
and theory. In particular, the MC data reproduce the results of our experiments on charged
wormlike micelles very well.

Despite the severe approximations of the continuous model used, general properties of
the simulated systems such as the Kuhn length and the position of the peak are found to agree
with experiments. It is clear that our data have been obtained under conditions where the
approximations made should be appropriate. However, it is also clear that we are now in a
position to compare experimental scattering data of a quality far superior to those obtained
with classical PEL with simulated scattering functions.

We have in this work taken the first steps in the direction of providing a fitting function
which can be used in the analysis of our light scattering and SANS data on charged wormlike
micelles [5]. We now have numerical expressions for S(0) which can be used in attempts to
determine the growth laws of the micelles from the forward scattering as determined by light
scattering. We have furthermore expressions [27] which will allow us to aim at fitting the full
q range of the measured scattering data. In this procedure the variation of the Kuhn length with
concentration and ionic strength as determined by the simulations should be employed together
with the knowledge of S(0) and the growth law, which we hope we can determine from the
analysis of the light scattering data, and will be the object of a forthcoming publication.
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